Extensions 1→N→G→Q→1 with N=C42 and Q=D11

Direct product G=N×Q with N=C42 and Q=D11
dρLabelID
C42×D11176C4^2xD11352,66

Semidirect products G=N:Q with N=C42 and Q=D11
extensionφ:Q→Aut NdρLabelID
C421D11 = C42⋊D11φ: D11/C11C2 ⊆ Aut C42176C4^2:1D11352,67
C422D11 = C422D11φ: D11/C11C2 ⊆ Aut C42176C4^2:2D11352,71
C423D11 = D441C4φ: D11/C11C2 ⊆ Aut C42882C4^2:3D11352,11
C424D11 = C4×D44φ: D11/C11C2 ⊆ Aut C42176C4^2:4D11352,68
C425D11 = C4⋊D44φ: D11/C11C2 ⊆ Aut C42176C4^2:5D11352,69
C426D11 = C4.D44φ: D11/C11C2 ⊆ Aut C42176C4^2:6D11352,70

Non-split extensions G=N.Q with N=C42 and Q=D11
extensionφ:Q→Aut NdρLabelID
C42.1D11 = C42.D11φ: D11/C11C2 ⊆ Aut C42352C4^2.1D11352,9
C42.2D11 = C44⋊C8φ: D11/C11C2 ⊆ Aut C42352C4^2.2D11352,10
C42.3D11 = C4×Dic22φ: D11/C11C2 ⊆ Aut C42352C4^2.3D11352,63
C42.4D11 = C442Q8φ: D11/C11C2 ⊆ Aut C42352C4^2.4D11352,64
C42.5D11 = C44.6Q8φ: D11/C11C2 ⊆ Aut C42352C4^2.5D11352,65
C42.6D11 = C4×C11⋊C8central extension (φ=1)352C4^2.6D11352,8

׿
×
𝔽